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1 Introduction

In this report I will give brief overview of quantum stablizers and stabilzers
codes. I will generally use Shor’s 9 qubit code. Near the end I will show the 5
qubit stablizer and corresponding stabilzer code.

2 Errors

When sending a qubit over a wire there is a possiblity that an error can occur,
giving us the incorrect qubit on the other end. We consider an error to be a bit
flip, a sign (phase) flip, both a bit and sign flip, or no error occuring. These
four errors can be expressed as the Pauli operators below respectivley.

X =

(
0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = iXZ =

(
0 −i
i 0

)
, I =

(
1 0
0 1

)

3 Quantum Codes

Because of the no cloning theorem for qubits, we are not able to duplicate
a qubit. A quantum code allows us to spread the information contained in a
single qubit over multiple entangled qubits. A quantum code is a 2k dimensional
subspace of C2n where k is the number of qubits we are encoding and n is the
length of the code.[2][3] For example, Shor’s 9-qubit code [1] used to encode a
single qubit is,

|0〉 → |0̄〉 = (|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)
|1〉 → |1̄〉 = (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

(3.1)

Note that |0̄〉 ⊥ |1̄〉, so {|0̄〉 , |1̄〉} spans a 2-dimensional subspace Q of C29 .
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4 Stabilizers

We say that a state |ψ〉 is stabilized by an operator K if it is a +1 eigenstate of
K, i.e. K |ψ〉 = |ψ〉.

Let E = {E1 ⊗ . . .⊗ En|Ei ∈ {X,Y, Z, I}}
Let the quantum code Q be a subspace of C2n .
Then, the stabilizer of Q is S = {M ∈ E|Mv = v,∀v ∈ Q}.

For examples, the stablizer for Shor’s 9-qubit code (3.1) is,

M1 Z Z I I I I I I I
M2 Z I Z I I I I I I
M3 I I I Z Z I I I I
M4 I I I Z I Z I I I
M5 I I I I I I Z Z I
M6 I I I I I I Z I Z
M7 X X X X X X I I I
M8 X X X I I I X X X

Stablizers allow us to more easily represent the quantum code, the errors it
can detect and correct, and the error correction and detection circuit associated
with the quantum code. It also allows us to reduce a multi-qubit space to a
single qubit space (assuming we are encoding k = 1 qubits).

Note that the stablizer S for Shor’s 9-qubit code contains 8 elements. In fact, if
our code is of length n and we are encoding k qubits, then S will contain 2n−k

elements (4.4), but its minimial representation will contain n− k multiplicative
independant generators [3]. Indeed, the stabilzer for Shor’s 9-qubit code contains
n−k = 9−1 = 8 generators. We call these multiplicative independant generators
because all other elements in the stablizer can be generated by multiplying some
combination of generators. Also, no generator can be generated by multiplying
two other generators. For example, consider the following operator,

M∗ = I ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I

M∗ stabilizes Shor’s 9-qubit code yet it is not included in the minimal stablizer.
This is because M∗ = M1M2.

We can show that |S| = 2n−k by assuming S has n − k generators [3]. Since
each Mi,Mj ∈ S commute (4.5) and ∀M ∈ S can be generated by multiplying
some combination of generators, the size of S will be the sum of all possible
combinations of generatoes, i.e

|S| =
n−k∑
i=0

(
n− k
i

)
(4.1)

2



To find this value we use the Binomial Theorem,

(x+ y)n =

n∑
i=0

(
n
i

)
xiyn−i (4.2)

Setting x = y = 1 in (4.2) we get

2n =

n∑
i=0

(
n
i

)
(4.3)

We can now use (4.3) to solve (4.1),

|S| =
n−k∑
i=0

(
n− k
i

)
= 2n−k (4.4)

It is interesting to note that any Mi,Mj ∈ S commute. We can show this using
the fact the Mv = v from the definition of a stabilizer.

MiMjv = Miv = v = Mjv = MjMiv (4.5)

We say that if an error E anticommutes with some M ∈ S then E is detectable.
Shor’s 9-qubit code can detect a single bit flip, sign flip, or a both a bit and sign
flip. Let us suppose a bit flip happens to the first bit in the first 3-qubit block,
i.e. E = X ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I. Then we can see that,

EM1 = XZ ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
= −ZX ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I
= −M1E

So, E anticommutes with M1. It is not difficult to see that if E were to cause a
single bit flip in any of the other 3-qubit blocks, then E will anticommute with
at least one of M1 . . .M6.

Let us assume E causes a sign flip in the second 3-qubit block, i.e
E = I ⊗ I ⊗ I ⊗ Z ⊗ I ⊗ I ⊗ I ⊗ I ⊗ I. Then we can see that,

EM7 = X ⊗X ⊗X ⊗ ZX ⊗X ⊗X ⊗X ⊗X ⊗ Z
= X ⊗X ⊗X ⊗−XZ ⊗X ⊗X ⊗X ⊗X ⊗ Z
= −M7E

An error E that causes a sign flip in one of the 3-qubit blocks will also anticom-
mute with at least one of M7 or M8.

3



5 Correcting Errors

Let us consider Shor’s 9-qubit code (3.1) again. In the the case of a bit flip, the
idea behind correcting it would be to compare the first and second qubits in a
block and the first and third. Two of the qubits will match, so we just need to
change the third to match too. The same idea works for a sign flip, except we
are comparing the signs between the 3-qubit blocks.

6 Five Qubit Code

We used Shor’s 9-qubit code (3.1) for our examples, but it is not the only quan-
tum error correcting code. There exists a 5-qubit code too. The 5-qubit code
is of immense interest because it is the shortest length code that can correct a
single error, i.e. both a bit flip and sign flip [1][3].

The stabilizer S for the 5-qubit code is [1]

M1 X Z Z X I
M2 I X Z Z X
M3 X I X Z Z
M4 Z X I X Z

To get the first basis codewords we perform the following,

|0̄〉 =
∑
M∈S

|00000〉

= |00000〉+M1 |00000〉+M2 |00000〉+M3 |00000〉+M4 |00000〉
+M1M2 |00000〉+M1M3 |00000〉+M1M4 |00000〉
+M2M3 |00000〉+M2M4 |00000〉+M3M4 |00000〉
+M1M2M3 |00000〉+M1M2M4 |00000〉+M1M3M4 |00000〉+M2M3M4 |00000〉
+M1M2M3M4 |00000〉

|1̄〉 = X⊗5 |0̄〉

The 5-qubit code is a non-CSS (Calderbank-Shor-Steane) code. This means that
it mixes Z and X in its generators. By doing this, it is not as straightforward
of an approach to create the error correcting circuit [3].
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